Laboro.AI

Laboro.AIコラム

機械学習とディープラーニング(深層学習)の違いとは

2020.11.12

概 要

AIの代表的な分野として挙げられるのが、機械学習とディープラーニング(深層学習)です。2010年代から始まったとされる第3次AIブームにおいて最重要とされる機械学習とディープラーニング。これらにはどのような違いがあり、どのような活用方法があるのでしょうか?このコラムでは機械学習とディープラーニングの違いや活用事例などについてご紹介します。

目 次

機械学習とディープラーニング(深層学習)の基本
 ・機械学習とは
 ・機械学習と比較したディープラーニング(深層学習)
ディープラーニング(深層学習)の活用分野
 ・画像分野
 ・音声分野
 ・自然言語処理
 ・時系列データの予測
ディープラーニング(深層学習)はどのようなときに使えるのか?
 ・データセットの内容
 ・利用可能なハードウェア
 ・説明責任
機械学習とディープラーニング(深層学習)の違いを把握しよう

機械学習とディープラーニング(深層学習)の基本

同時に語られることの多いAI、機械学習、ディープラーニングですが、これらはAIの1つの技術領域として機械学習があり、機械学習の1技術としてディープラーニングがあるというカテゴリ関係にあります。近年AIがブームになっているのは、機械学習の1手法としてディープラーニングが登場し、AIのレベルを大きく引き上げたことが大きな要因だとされています。

機械学習とは

機械学習とは、膨大なデータをもとにコンピュータがルールやパターンを学習する技術を指します。データによりトレーニングを行うことで、特定のタスクを高い精度でこなせるようになります。

機械学習はさらに、教師あり学習、教師なし学習、強化学習に分類できます。これらはタスクの内容に応じて適した技術が選択されます。

▼教師あり学習
コンピュータにリンゴの画像を学習させるというタスクがあった場合、さまざまなリンゴの画像に対し「リンゴ」という正解を一緒に与えるものです。コンピュータは多くの正解を分析しながら、リンゴについて学習していきます。

▼教師なし学習
正解を与えず、コンピュータは自分で特徴を分析しながら類似のデータをグループ分けするクラスタリングなどを行います。

▼強化学習
学習のプロセスもコンピュータ自身が強化していく技術で、最もいい報酬を得られるように学習内容を自動的に改善していくというものです。

機械学習と比較したディープラーニング(深層学習)

機械学習では原則として、人間が特徴量を選択する必要があります。特徴量とは、コンピュータが物事を認識する際に基準とする特徴のことを指し、リンゴの画像認識においては「色」「形」などが特徴量の一つとして考えられます。その画像に写っているものが赤色であればリンゴの特徴に該当しますが、紫色であればリンゴとは言えず、この色によってリンゴかどうかを判断するといった具合です。

コンピュータが機械学習でリンゴについて学習するためには、参考にすべき特徴量を人間が選択します。例えば、赤リンゴと青リンゴの分類を学習させたい場合、「形」の特徴量を参考にすると上手く分類することは難しいかもしれません。そこで「色」を参考にすると人間が特徴量を指定することで、コンピュータは赤リンゴと青リンゴの特徴を学習し、分類できるようになります。

この「特徴量の選択」という人間の作業を取り払ったのが、ディープラーニングです。ディープラーニングでは与えられたタスクに対し、どの特徴量を参考に学習すればいいのかもコンピューター自身が判断します。上記の赤リンゴと青リンゴの分類においては、色を参考にするのか形を参考にするのか、人間が指定せずとも「色が参考になる」と判断し、正確な分類を学習していきます。

ディープラーニングは人間の作業量が少なく、その上で従来の機械学習よりも高精度な判断を行えるようになる点がメリットです。また、色などの分かりやすく言語化しやすい領域よりも、言語化しにくく人間では区別が難しい領域で大きな力を発揮すると言われています。

例えば、農家が経験によって振り分けるしかない農作物の等級の分類に関して、ディープラーニングを用いて分類を自動化する試みが行われています。等級や傷の有無など、品質の判断は赤リンゴと青リンゴの違いのような簡単なものではありませんが、ディープラーニングを活用すれば高精度な自動分類により業務効率化を進めることも期待されています。

ディープラーニング(深層学習)の活用分野

ディープラーニングが登場したことで、AI活用がさまざまな分野で発展しています。ここでは、代表的な活用分野についてご紹介します。

画像分野

上記でご紹介したリンゴの画像認識の例もそうですが、画像認識はディープラーニングが得意とする分野の1つです。身近なものでは、カメラの顔認識機能が挙げられます。コンピュータに顔の特徴を学習させることで画像から人間の顔を識別できるようにするもので、ディープラーニングによりさまざまな応用が登場しています。ベースとなる技術としては、畳み込みニューラルネットワーク(CNN)が挙げられます。

また、患部や検査画像から病気の種類や状態を判断する技術もディープラーニングによって発展しています。経験の少ない医師の目では判断がつきにくい症状でも、ディープラーニングによって学習したコンピュータによって効率的な診断を支援するサービスも提供されています。

(出典:富士フィルム

音声分野

音声認識もディープラーニングの活用が進んでいる分野のひとつです。例えば、製造現場における音響データを分析し、異常音を検知するソリューションが登場しています。検査員による保守は経験の差によって精度が変わり、効率的でない部分もありましたが、このAI技術では保守の精度を高くすることで故障の検知や品質の確保などにつながると期待されています。

(出典:日立製作所

自然言語処理

手書き文字や発話など、様々な文字情報を処理する技術を自然言語処理と言います。この技術により、これまでは自動化が難しかった人間の作業もコンピュータが行えるようになってきています。 例えば、Laboro.AIの事例として文書分類の自動化があります。申込書に書いてある各テキストを、その後の工程の別々の担当者に振り分ける際、これまでは振り分け担当が目視で行うしかありませんでした。Laboro.AIが開発した文書分類ソリューションによるAIでは、書面上の文字情報を認識した上で、申し送るべき情報とそうでない情報を振り分けることを可能にしています。

(参考:プロジェクト事例 文書分類による業務自動化率の向上

時系列データ予測

膨大なビッグデータを処理してパターンを学習することで、コンピュータは未来の時系列の情報も高い精度で予測できるようになってきています。

実際に活用が進んでいる分野としては、小売店や飲食店の需要予測があります。これまでも売上や時間、天候などの情報から需要の予測を行えましたが、AIにより人為的なミスや経験の差を少なくし、より高い精度での需要予測が可能になっています。また、天気やポイント付与率などのデータを用いて需要予測を行い、自動で発注まで行うといった応用も登場しています。

(出典:日本経済新聞 2020年5月13日 「イズミ、AI発注を全店で 天気や気温で需要予測」

ディープラーニング(深層学習)は、どのようなときに使えるか?

AIを活用したシステムを構築したいとなった場合には、そのプロジェクトの特徴を検討することでディープラーニングが適しているかどうかを判断することになります。

データセットの内容

ディープラーニングでは人には判断ができないような複雑な分析も可能ですが、その分、膨大な学習データが必要となります。大量のデータが用意できるのであれば、ディープラーニングによるAIモデルの構築を視野に入れることができます。

利用可能なハードウェア

大量のデータを用いて複雑な処理を行うディープラーニングでは、その計算処理に耐えうるハードウェアを用意する必要があります。ディープラーニング用に設計されたハードウェアでは数秒で終わる処理も、スペックが足りないと数週間かかるといったことも起こり得るからです。

説明責任

ディープラーニングの特徴として、コンピュータが人に代わって特徴を抽出することのメリットをお伝えしました。その裏返しとして、アルゴリズムがなぜそのような出力をしたのかを説明できない「ブラックボックス問題」がディープラーニングには伴います。例えば医療でのAI活用のように人の命に関わるようなタスクの場合、「なぜAIがそのような診断・判断をしたのか」といった説明性は重要な点になります。こうした観点からもディープラーニングを用いるべきかどうかを判断する必要があります。

機械学習とディープラーニング(深層学習)の違いを把握しよう

似たような言葉として語られることも多い機械学習とディープラーニングですが、両者は学習過程で特徴量の選択を人間が行うかどうかという大きな違いがあり、必要なデータセットや得られる結果も大きく異なります。AIベンダーと協力してAIを導入する際にもこれら点は重要な論点となりますので、その違いをよく把握しておきましょう。